新書推薦:
《
《全面与进步跨太平洋伙伴关系协定》国有企业条款研究
》
售價:HK$
101.2
《
银行业架构网络BIAN(全球数字化时代金融服务业框架)(数字化转型与创新管理丛书)
》
售價:HK$
101.2
《
金托邦:江湖中的沉重正义
》
售價:HK$
62.1
《
易经今解:释疑·解惑·见微
》
售價:HK$
90.9
《
东欧史(全二册)-“中间地带”的困境
》
售價:HK$
227.7
《
虚拟资本:金融怎样挪用我们的未来
》
售價:HK$
79.4
《
刻意练习不生气
》
售價:HK$
40.3
《
大宋理财:青苗法与王安石的金融帝国(全彩插图本)
》
售價:HK$
112.7
|
目錄:
|
1 贵金属催化剂的特征
1.1 反应机理
1.2 活性
1.3 选择性
1.4 协同效应
1.5 溶剂
1.6 稳定性
1.7 耐毒性
1.8 作为金属的毒性
1.9 催化剂的制备
1.10废催化剂的处理
2 使用方法
2.1 选择反应方式
2.2 浆态床催化剂
2.2.1 催化剂的使用量
2.2.2 金属浓度
2.2.3 粒度和活性
2.2.4 反应温度和反应速率
2.2.5 粒度和过滤速度
2.2.6 重复使用法
2.2.7 浆态床反应器
2.2.8 浆态床催化剂的充填方法
2.2.9 预还原
2.2.10 过滤方法
2.2.11 滤纸和滤布
2.2.12 过滤助剂
2.2.13 废催化剂的形状
2.3 固定床催化剂
2.3.1 固定床反应器
2.3.2 固定床催化剂的填充方法
2.3.3 预还原
2.3.4 操作方法
2.3.5 催化剂的卸出
2.3.6 废催化剂的处理方法
2.4 催化剂的保管方法
2.4.1 保存方法
2.4.2 火灾时的灭火方法
2.5 事故示例
3 活性劣化
3.1 工业催化剂的寿命
3.2 活性劣化
3.2.1 初期活性
3.2.2 催化剂表面的变化
3.2.3 工业催化剂的劣化原因
3.2.4 催化剂毒和反应促进剂
3.2.5 活性和选择性赋予物质的脱离
3.2.6 催化剂配体的劣化
3.3 劣化现象
3.4 催化剂毒
3.4.1 一氧化碳
3.4.2 氧气
3.4.3 酸
3.4.4 附着异物
3.4.5 卤素
3.4.6 硫成分
3.4.7 重金属
3.4.8 反应生成物
3.4.9 含有孤对电子的化合物
3.4.1 0有机化合物
3.4.1 1灰尘类
3.4.1 2其他的不明杂质
3.5 催化剂自身的变化
3.5.1 烧结
3.5.2 凝集和溶出
3.5.3 载体的变化
3.5.4 价态的变化
3.6 物理原因造成的劣化
3.6.1 磨损,粉化
3.6.2 机械强度的变化
3.6.3 脱离
4 劣化原因的调查和劣化对策
4.1 劣化原因的解析
4.1.1 劣化原因的确定
4.1.2 反应速率
4.2 劣化原因的测定方法
4.2.1 粒度分布
4.2.2 比表面积(孔径分布)
4.2.3 热重分析TG)
4.2.4 金属表面积(MSA)
4.2.5 XRFX射线荧光分析)
4.2.6 AES(俄歇电子分光分析,Augerelectronspectroscopy)
4.2.7 XPSX?rayphotoelectronspectroscopy
4.2.8 TEM(透射电镜)
4.2.9 Cl,S,P的化学分析
4.2.1 0利用活性劣化反应测定
4.3 劣化原因的解析
4.3.1 解析方法
4.3.2 催化剂的处理方法
4.3.3 根据推测进行解析
4.3.4 通过再生处理进行解析
4.4 劣化对策
4.4.1 针对使用方法的劣化对策
4.4.2 替代催化剂
4.4.3 劣化催化剂的利用
4.4.4 低活性催化剂的使用
4.4.5 体系内添加物防止劣化作用
4.4.6 对反应条件的研究
4.5 再生法
4.6 劣化原因的解析实例
4.6.1 还原烷基化催化剂
4.6.2 乙烯裂解副产物油的加氢催化剂
4.6.3 马来酸氢化催化剂
4.6.4 去除空气中一氧化碳的催化剂
4.7 寿命试验
4.7.1 浆态床
4.7.2 固定床
4.7.3 实际的反应试验
4.7.4 快速寿命试验
5 工业催化剂的开发
5.1 催化剂的制备
5.1.1 通过制备方法实现高活性
5.1.2 通过制备方法实现高选择性
5.1.3 通过制备方法实现催化剂长寿命
5.2 合金化催化剂
5.2.1 通过合金化实现高活性
5.2.2 通过合金化实现高选择性
5.2.3 通过合金化延长催化剂寿命
5.3 与载体的相互作用
5.3.1 通过载体实现高活性化
5.3.2 通过载体实现高选择性
5.3.3 通过载体实现多功能化
5.3.4 通过载体实现长寿命化
5.4 催化剂的修饰
5.4.1 通过修饰实现高活性化
5.4.2 通过修饰实现高选择性
5.4.3 通过修饰实现多功能化
5.5 混合催化剂
5.6 其他
6 反应器的优化设计
6.1 沟流效应mull?distribution
6.2 多管式反应器multi?tubularreactor
6.3 多段反应器
6.4 下向流
6.5 长寿命催化剂的开发流程
7 非均相催化反应
7.1 氢化反应
7.1.1 炔的氢化
7.1.2 烯烃的氢化
7.1.3 芳香族硝化物的氢化
7.1.4 卤代硝基化合物的氢化
7.1.5 Bamberger重排反应
7.1.6 亚硝基化合物的氢化
7.1.7 肟的氢化
7.1.8 叠氮化物的还原
7.1.9 羰基的氢化
7.1.10 腈的氢化
7.1.11 环氧基的氢化
7.1.12 羧酸的还原
7.1.13 芳香化合物的氢化
7.1.14 苯酚类的氢化
7.1.15 芳香胺的氢化
7.1.16 多元环的氢化
7.1.17 杂环的氢化
7.1.18 过氧化物的氢化
7.2 氢化脱卤
7.3 氢化分解
7.4 酯的氢化分解
7.5 还原烷基化
7.6 还原胺化
7.7 二聚化
7.8 异构化
7.9 歧化
7.10 复分解反应
7.11 羰基化
7.12 脱氢
7.12.1 烷烃脱氢
7.12.2 环烷烃脱氢
7.12.3 醇脱氢
7.13氧化反应
7.13.1 烯烃的氧化
7.13.2 醇的氧化
7.13.3 羰基的氧化
7.13.4 加水氧化
7.13.5 氧化酯化
7.13.6 乙酰氧基化
7.13.7 其他氧化反应
7.14分解
8 均相催化反应
8.1 羰基化
8.1.1 醋酸
8.1.2 无水醋酸
8.1.3 α苯丙酸
8.1.4 乙烯的甲氧甲酰化
8.1.5 丙炔的甲氧甲酰化
8.1.6 Heck羰基化
8.1.7 碳酸酯的引入
8.2 氢甲酰化
8.2.1 2 乙基己醇(辛醇)
8.2.2 1,4?戊二醇
8.2.3 乙烯的氢甲酰化
8.2.4 3?甲基戊二醇
8.2.5 布洛芬
8.3 丁二烯的水合二聚
8.4 氢化
8.4.1 烯烃的氢化
8.4.2 硝基化合物的氢化
8.4.3 羰基的氢化
8.4.4 羧酸的还原
8.4.5 聚合物的氢化
8.5 氨基化
8.6 硅氢化
8.7 异构化
8.8 液相氧化反应
8.8.1 瓦克尔氧化(Wackeroxidation)
8.8.2 RuO2催化氧化
8.8.3 OsO4催化氧化
8.9 二聚
8.9.1 氧化二聚
8.9.2 Suzuki反应
8.1 0环化反应
8.1 1脱氨
8.1 2均相固定催化剂
8.1 2.1 液相氧化
8.1 2.2 羰基的氢化
8.1 3不对称合成
8.1 3.1 烯烃的氢化
8.1 3.2 羰基的氢化
8.1 3.3 异构化
9 特殊反应催化剂
9.1 氢化精制
9.1.1 乙烯的精制
9.1.2 氯乙烯制造过程中乙炔的氢化
9.1.3 丙烯的精制
9.1.4 丁二烯中含有的乙烯基乙炔的氢化
9.1.5 丁烯的精制
9.1.6 苯乙烯的精制
9.1.7 回收C4,C
9.1.8 高纯度对苯二甲酸
9.1.9 高纯度间苯二甲酸
9.1.1 0ε?己内酰胺的精制
9.1.1 1丁醇的精制
9.1.1 2其他的氢化精制
9.2 分解汽油的氢化
9.3 醋酸乙烯
9.4 乙酸烯丙酯
9.5 汽油的重整
9.6 p?二甲苯
9.7 聚合物的氢化
9.7.1 聚丁烯
9.7.2 羟基聚丁二烯
9.7.3 丙烯腈?丁二烯共聚物
9.7.4 苯乙烯?丁二烯共聚物
9.7.5 ABS(丙烯腈?丁二烯?苯乙烯)树脂
9.7.6 聚苯乙烯
9.7.7 聚苯胺
9.7.8 降冰片烯系树脂
9.7.9 乙烯?CO共聚物
9.7.1 0C5以及DCPD(环戊二烯)系石油树脂
9.7.1 1C9石油树脂
9.7.1 2固定床催化剂的设计
9.7.1 3均相催化剂
9.8 苯酚工艺
9.9 氨合成
9.1 0过氧化氢
9.1 1尼龙
9.1 2MIBK(从丙酮直接合成)
9.1 3山梨醇
10 气体相关催化剂
10.1 气体精制
10.1.1 脱氧气反应
10.1.2 氩气的精制
10.1.3 再结合装置
10.1.4 甲烷化
10.1.5 CO的选择性氧化
10.1.6 二氧化碳的精制
10.1.7 尿素装置中去除CO2中含有的H
10.1.8 高纯度氮气
10.1.9 COG气体(焦炉煤气)的精制
10.2 气体制造
10.2.1 水蒸气重整
10.2.2 甲烷的空气重整
10.2.3 氨气的分解
10.2.4 NO2的还原
10.2.5 退火炉气体的制造
10.3 炉内清洗
11 环境催化剂
11.1 VOC去除催化剂
11.1.1 完全氧化反应
11.1.2 脱臭原理
11.1.3 设计条件
11.1.4 催化剂寿命
11.1.5 去除性能[1]
11.1.6 VOC去除催化剂的长寿命对策
11.1.7 使用示例
11.1.8 利用工厂废气的热回收和动力回收
11.1.9 运转方法
11.2 有害气体净化催化剂
11.2.1 一氧化二氮的分解
11.2.2 除CO催化剂
11.2.3 DeNOx催化剂
11.3 催化剂燃烧
11.3.1 催化剂燃烧器
11.3.2 烧结炉废气
11.4 废水处理
11.4.1 气体清洗液的处理
11.4.2 化学装置的废液处理
11.4.3 硫化物处理
11.4.4 氨去除
11.4.5 利用NH4NO2分解的脱氮法
11.4.6 通过水合肼还原硝酸离子
11.4.7 有机酸废液处理
11.4.8 氯化铵废液处理
11.4.9 还原气氛下的废液处理
11.4.1 0地下水的处理
12 期望的催化反应和催化剂
12.1 过氧化氢
12.2 甲醇
12.3 乙烯
12.4 醋酸
12.4.1 固定床催化剂催化的醋酸制造
12.4.2 甲酸甲酯的异构化
12.4.3 乙烷的氧化制造醋酸
12.5 醋酸乙酯
12.6 醋酸制醋酸乙烯
12.7 丙烯酸
12.8 MMA
12.9 丁醛
12.1 0己二酸
12.1 0.1 丁二烯合成己二酸
12.1 0.2 1,4?二乙酰氧基丁烯的羰基化
12.1 11,6?己二醇
12.1 1.1 己二酸的直接还原
12.1 1.2 丁二烯制1,6?己二醇
12.1 2己二腈
12.1 3十二烯
12.1 4苯二甲醇
12.1 5CHDM
12.1 6高级醇
12.1 7苯酚
12.1 8碳酸二苯酯(DPC)
12.1 9聚氨酯
12.1 9.1 N,N二苯脲
12.1 9.2 TDI
12.1 9.3 MDI
12.2 0脱硫催化剂
本书参考书目
附录
|
|