登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書

『簡體書』高阶张量特征值和相关多项式优化问题研究(英文)

書城自編碼: 2550962
分類:簡體書→大陸圖書→自然科學數學
作者: 杨宇宁,杨庆之 著
國際書號(ISBN): 9787030437655
出版社: 科学出版社
出版日期: 2015-03-01
版次: 1 印次: 1
頁數/字數: 183/300000
書度/開本: 16开 釘裝: 平装

售價:HK$ 144.3

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
元照英美法词典(简装学生版)
《 元照英美法词典(简装学生版) 》

售價:HK$ 108.9
防患于未“燃”:故宫历史上的火灾与消防(在故宫) 探秘故宫防火智慧 解码古建营造技艺
《 防患于未“燃”:故宫历史上的火灾与消防(在故宫) 探秘故宫防火智慧 解码古建营造技艺 》

售價:HK$ 86.9
从家族企业到商业世家:创业家族世代繁荣的路线图
《 从家族企业到商业世家:创业家族世代繁荣的路线图 》

售價:HK$ 86.9
敦煌石窟乐舞图像研究
《 敦煌石窟乐舞图像研究 》

售價:HK$ 184.8
剑桥俄国史 第一卷 从早期罗斯到1689年
《 剑桥俄国史 第一卷 从早期罗斯到1689年 》

售價:HK$ 269.5
原来数学还可以这样学
《 原来数学还可以这样学 》

售價:HK$ 87.8
典籍里的中国  第二辑
《 典籍里的中国 第二辑 》

售價:HK$ 140.8
108种手艺1:中国人的生活美学  王的手创非物质文化遗产的全新再现。以鲜活的一手内容全面展现优秀传统手艺
《 108种手艺1:中国人的生活美学 王的手创非物质文化遗产的全新再现。以鲜活的一手内容全面展现优秀传统手艺 》

售價:HK$ 217.8

建議一齊購買:

+

HK$ 257.4
《数值分析(原书第2版)》
+

HK$ 93.6
《随机模拟方法与应用》
目錄
Contents
Chapter 1 Introduction
Eigenvalues problems of higher order tensors
Related polynomial optimization problems
Applications
Spectral properties and algorithms: a literature review
The organization of this book
Chapter 2 Spectral Properties of H-eigenvalue Problems of a Nonnegative Square Tensor
Introduction
From nonnegative matrices to nonnegative tensors
Nonnegative irreducible tensors and primitive tensors
Perron-Frobenius theorem for nonnegative tensors and related results
Geometric simplicity
The Collatz-Wielandt formula
Other related results
Some properties for nonnegative weakly irreducible tensors
Weak irreducibility
Generalization from nonnegative irreducible tensors to nonnegative
weakly irreducible tensors
Chapter 3 Algorithms for Finding the Largest H-eigenvalue of a
Nonnegative Square Tensor
Introduction
A polynomial-time approach for computing the spectral radius
Two algorithms and convergence analysis
An inexact power-type algorithm
A one-step inner iteration power-type algorithm
Numerical experiments
Experiments on the polynomial-time approach
Experiments on the inexact algorithms
Chapter 4 Spectral Properties and Algorithms of H-singular Value Problems of a Nonnegative Rectangular Tensor
Introduction
Preliminaries
Some conclusions concerning the singular value of a nonnegative
rectangular tensor
Primitivity and the convergence of the CQZ method for ˉnding the
largest singular value of a nonnegative rectangular tensor
Algorithms for computing the largest singular value of a nonnegative
rectangular tensor
A polynomial-time algorithm
An inexact algorithm
A solving method of the largest singular value based on the symmetric
embedding
Singular values of a rectangular tensor
Singular values of a general tensor
Chapter 5 Properties and Algorithms of Z-eigenvalue Problems of a Symmetric Tensor
Introduction
Some spectral properties
The Collatz-Wielandt formula
Bounds on the Z-spectral radius
The reformulation problem and the no duality gap result
The reformulation problem
Dual problem of RP
No duality gap result
Relaxations and algorithms
Nuclear norm regularized convex relaxation of RP and the proximal
augmented Lagrangian method
The truncated nuclear norm regularization and the approximation
Alternating least eigenvalue method for ˉnding a global minima
Numerical results
Chapter 6 Solving Biquadratic Optimization Problems via
Semideˉnite Relaxation
Introduction
Semideˉnite relaxations and approximate bounds
The nonnegative case
The square-free case and the positive semideˉnite case
Approximation al
內容試閱
Chapter 1
Introduction
Tensor is a hot topic in the past decade Nowadays, many real world problems can be modeled as tensor problems, just to name a few: signal processing[36, 101], data analysis[17, 32], chemometrics[12, 13, 111], hypergraph theory[34, 66], diusion magnetic resonance imaging MRI [3, 6, 44], quantum entanglement in quantum physics [35], higher order Markov chains[107] and elastic materials analysis[50, 77] Speciˉcally, a tensor can be viewed as a multiarray: if a vector a = [a1; ; an]T 2 Rn is a one- way-array, a matrix A = aij 2 Rn×n is a two-way-array, then a tensor of order m dimension n: A = ai1 in is a multiarray Here \order" refers to the number of indices of each entry of A, eg, a matrix is a tensor of order 2 Just imagine we have l matrices of size m × n By stacking them up together, we get a cube, which is a l × m × n tensor If we merge k such tensors together, then we get a hyper-cube, which is a k × l × m × n tensor, and so on Particularly, if k = l = m = n = , ie, all the dimensions of a tensor are the same, then the tensor is called a \square" tensor, which generalizes the \square" matrix and is an important type of tensors studied in this book
We are particularly interested in the spectral properties of eigenvalue problems of higher order tensor and related polynomial optimization problems In this book, the main concerns are the following ˉve topics:
Spectral properties and algorithms of H-eigenvalue problems;
Spectral properties and algorithms of H-singular value problems;
Properties and algorithms of Z-eigenvalue problems;
Approximation methods of biquadratic optimization problems;
Approximation methods of trilinear optimization problems
We will introduce the related concepts and problems in the rest of this chapter
1.1 Eigenvalues problems of higher order tensors
It is well known that eigenvalues play an important role in matrix theory For a matrix A 2 Cn×n, if there exists a pair ; x 2 C × Cn with x 6= 0 such that
Ax = x;
then is called an eigenvalue of A, and x is an eigenvector corresponding to To study tensor problems, one may naturally ask a question: can we deˉne eigenvalues and eigenvectors on tensors? The answer is positive In 2005, the concept of eigen- values and eigenvectors of a symmetric tensor with order even was introduced by Qi[119]
To be more speciˉc, let A = ai1 im be an order m n-th dimensional real square tensor If there is a complex number and a nonzero complex vector x that are solutions of the following homogeneous polynomial equations:
Axm1 = x[m1]; 11
then is called an eigenvalue of A and x the eigenvector of A associated with In problem 11, Axm1 and x[m1] are vectors, whose i-th entries are given by
respectively If and x are restricted in the real ˉeld, then ; x is called an H- eigenpaire If an eigenvalue is not an H-eigenvalue, we call it an N-eigenvalue of A Besides the H-eigenvalues, Qi deˉned the Z-eigenvalues[119]: a real number and a real vector x are called Z-eigenvalue of A and a Z-eigenvector of A associated with the Z-eigenvalue respectively, if they are solutions of the following system:
1.2
Here k . k is the Euclidean norm If and x are complex, then they are called E-eiganvalue and E-eigenvector
In the same year, Lim[94] independently deˉned eigenvalues for general real ten- sors in the real ˉeld In his work, the lk eigenvalues are H-eigenvalues, while the l2 eigenvalues of tensors are the Z-eigenvalues Note that in the case of m = 2, both the H-eigenvalue and Z-eigenvalue collapse to the eigenvalues of a matrix
The concept of singular values and singular vectors can be generalized to higher order tensors as well Let us recall in the real case that for a matrix A 2 Rn1×n2 , if there exists a triple ; x1; x2 2 R × Rn1 × Rn2 such that
Ax2 = x1 and ATx1 = x2;
then is called a singular value of A, and x1 and x2 are the left and right singular vector corresponding to , respectively
For higher order tensors, for example, consider a third order tensor A2Rn1×n2×n3 The corresponding singular value problem can be deˉned as[94]
where
For other higher order tensors, the deˉnition is similar
There are other kinds of eigenvaluessingular values for other types of tensors Assume that p; q; n1 and n2 are positive integers, and n1; n2 2 We call A = ai1 ipj1 jq , where ai1 ipj1 jq 2 R, for ik = 1; ; n1, k = 1; ; p, and jk = 1; ; n2, k = 1; ; q, a real p; q-th order n1×n2 dimensional rectangular tensor, or simply a real rectangular tensor When p = q = 1, A is simply a real n1 × n2 rectangular matrix Denote M = p + q If there is a complex number and two nonzero complex vectors x and y such that:
Axp1yq = x[M1];
Axpyq1 = y[M1];
where Axp1yq is a vector in Rn1 whose i-th entry is given by
and Axpyq1 is a vector in Rn2 whose j-th entry is given by
then is called the singular value of A and x; y are the left and right eigenvectors of A

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.