新書推薦:

《
中国精怪图鉴 阿亮著 精怪是古人对抗未知的隐喻 读它们的故事学会与内心的恐惧共处 一本书带你邂逅千年
》
售價:HK$
97.9

《
大唐之美(梦回唐朝的导览手册,考古、艺术、历史、文学融为一体,全景视角,640幅全彩图片,带你踏上唐
》
售價:HK$
173.8

《
零基础刺绣一本通
》
售價:HK$
64.9

《
牙体解剖生理学
》
售價:HK$
42.9

《
新一代玫瑰月季
》
售價:HK$
85.8

《
红颜来处是长安:大唐的盛世和她们的命运
》
售價:HK$
75.9

《
没有内容的人
》
售價:HK$
63.8

《
传奇中国:二十四节气 随书附赠四季民俗小画4幅
》
售價:HK$
217.8
|
| 內容簡介: |
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,最后介绍了历届中国数学奥林匹克竞赛试题。
來源:香港大書城megBookStore,http://www.megbook.com.hk 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
|
| 目錄:
|
Chapter 1 Mathematical Olympiad in China
1.1 International Mathematical Olympiad IMO and China Mathematical Contest-Written before the 31st IMO
1.1.1 A Brief Introduction to IMO
1.1.2 A Historic Review of China Mathematical Contest
1.1.3 Activities of China in the IMO and the 31st IMO
Chapter 2 Olympiad''s Mathematics
2.1 The Application of Projective Geometry Methods to Problem Proving in Geometry
2.1.1 A Few Concepts in Projective Geometry
2.1.2 Some Examples
2.1 3 Exercises
2.2 A Conjecture Concerning Six Points in a Square
2.3 Modulo-Period Sequence of Numbers
2.3.1 Basic Concepts
2.3.2 Pure Modulo-period Sequence
2.3.3 The Periodicity of Sum Sequence
2.3.4 The Relation between the Period and the Initial Terms
2.4 Iteration of Fractional Linear Function and Consturction of a Class of Function Equation
2.5 Remarks Initiating from a Putnam Mathematics Competition Problem
2.5.1 Introductory Remarks
2.5.2 The Proof of the Problem
2.5.3 Reinforcing the Promble
2.5.4 Application
2.5.5 Mutually Supplementary Sequences and Reversible Sequences
2.6 The Ways of Finding the Best Choise Point
2.6. 1 The Congruent Transformation of Figures
2.6.2 Similarity Transformation of Figures
2.6.3 Partial Adjusting Method
2.6.4 The Contour Line Method
2.6.5 Algebraic Method
2.6.6 Trigonometrical Method
2.6.7 Analytic Method
2.6.8 Solution by Fermat Point Theorem
2.6.9 The Area Method
2.6.10 Physical Method
2.7 The Formulas and Inequalities for the Volumes of n-Simplex
2.8 The Polynomial of Inverse Root and Its Transformation
2.8.1 The Extension of an IMO Problem
2.8.2 The Inverse Root Polynomial
2.8.3 Trigonometric Formula of Recurrence Type
2.8.4 Inverse Root Polynomial Transformation
Chapter 3 Suggestions and Answers of Problems
3.1 Remarks on Proposing Problems for Mathematics Competition
3.2 A Problem ofIMO and a Useful Polynomial
3.2.1 Introduction
3.2.2 The Proof of the Problem
3.2.3 Some Properties of Fx
3.2.4 Fmx and Some IMO Problems
3.2.5 An Existence Problem
3.3 Preliminary Approach to Methods of Proposing Mathematics Competition Problems
……
Chapter 4 Comment on the Exam Paper of Mathematical Olympiad Winter Camp in China
Chapter 5 Cluna Mathematical Olympiad from the First to the Lastest
|
|