登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書

『簡體書』一种基于混沌的非线性最优化问题:作业调度问题(英文)

書城自編碼: 3886051
分類:簡體書→大陸圖書→自然科學數學
作者: [埃],M.A.艾尔一萨尔巴吉
國際書號(ISBN): 9787576706789
出版社: 哈尔滨工业大学出版社
出版日期: 2023-03-01

頁數/字數: /
書度/開本: 32开 釘裝: 平装

售價:HK$ 43.7

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
华夏文库儒学书系:明代遗民:顾炎武、王夫之、黄宗羲
《 华夏文库儒学书系:明代遗民:顾炎武、王夫之、黄宗羲 》

售價:HK$ 25.4
中国书法之美:汉字美的历程
《 中国书法之美:汉字美的历程 》

售價:HK$ 136.8
葡萄酒与战争:法国人与纳粹的斗争(格致·格尔尼卡)
《 葡萄酒与战争:法国人与纳粹的斗争(格致·格尔尼卡) 》

售價:HK$ 73.2
2025年版 中华人民共和国药典(1~4部)
《 2025年版 中华人民共和国药典(1~4部) 》

售價:HK$ 4875.4
清华简《系年》综合研究(全二册)
《 清华简《系年》综合研究(全二册) 》

售價:HK$ 552.2
微渺人生
《 微渺人生 》

售價:HK$ 80.2
具身情绪:如何借助身体化解情绪困境
《 具身情绪:如何借助身体化解情绪困境 》

售價:HK$ 105.0
卢浮幽灵
《 卢浮幽灵 》

售價:HK$ 82.6

建議一齊購買:

+

HK$ 405.2
《普林斯顿三剑客数学读本(3册)》
+

HK$ 289.1
《实分析导论》
+

HK$ 163.4
《拓扑学(原书第2版)》
+

HK$ 201.2
《概率与测度 周年纪念版》
+

HK$ 74.2
《非数值并行算法(第一册)模拟退火算法》
+

HK$ 143.6
《MATLAB数学建模》
內容簡介:
本书展示了一种新的混合优化方法来解决最重要的**化问题之一——非线性**化问题。本书共包含六章内容,第一章提出了**化问题的数学模型;第二章致力于介绍遗传算法的工作原理,并解释了遗传算法是如何应用到解**化问题之中的;第三章提出了解非线性**化问题的一个新算法;第四章提出了作业安排调度问题的结构,引入了作业安排调度问题的公式化;第五章的目的是实施解作业安排调度问题的新方法,并解释了它的细节;第六章为结论以及给未来研究者的几点建议。
目錄
List of Figures
List of Tables
Abstract
CHAPTER 1: A Survey on Related Topoes
1.1 Introduction
1.2 Mathematical Model of Optimization Problems
1.3 Classification of optimization problems
1.3.1 Classification based on existence of constraints
1.3.2 Classification based on nature of the design variables
1.3.3 Classification based on physical structure of the problem
1.3.4 Classification based on nature of the equations involved
1.3.5 Classification based on permissible values of the design variables
1.3.6 Classification based on deterministic nature of the variables
1.3.7 Classification based on separability of the functions
1.3.8 Classification based on number of the objective functions
1.4 Optimization Techniques
1.4.1 Classical Optimization Techniques
1.4.1.1 Nonlinear Programming
1.4.2 Advanced Techniques
1.4.2.1 Genetic algorithm (GA)
1.4.2.2 Simulated annealing (SA)
1.4.2.3 Neural network optimization
1.4.2.4 Tabu search (TS)
1.4.2.5 Ant colony optimization (ACO)
1.4.2.6 Particle swarm optimization (PSO)
1.4.2.7 Harmony search (HS)
1.4.2.8 Artificial bee colony (ABC)
CHAPTER 2: Genetic Algorithm
2.1 Introduction
2.2 Working Principle of GA
2.3 Genetic algorithm procedure for optimization problems
2.3.1 Encoding
2.3.2 Initial Population
2.3.3 Evaluation
2.3.4 Create new population
2.3.4.1 Selection
2.3.4.2 Crossover
2.3.4.3 Mutation
2.3.5 Repair
2.3.6 Migration
2.3.7 Termination Test
2.4 Genetic algorithm Parameters
2.4.1 Crossover probability
2.4.2 Mutation probability(Pro)
2.4.3 Population Size
2.5 Advantages and disadvantages of GA
2.5.1 Advantages of GA
2.5.2 Disadvantages of GA
CHAPTER 3: A Chaos-based Evolutionary Algorithm for General Nonlinear Programming Problems
3.1 Introduction
3.2 Chaos Theory
3.3 Chaotic maps
3.4 The proposed algorithm
3.4.1 Phase I: GA
3.4.2 Phase II : Chaotic local search
3.5 Experimental results
3.5.1 Test function
3.5.1.1 Unconstrained benchmark problems
3.5.1.2 Constrained benchmark problems
3.5.2 Performance Analysis Using Different Chaotic Maps
3.5.3 Performance Analysis using logistic map
3.5.4 Speed Convergence analysis
3.6 Conclusion
CHAPTER 4: Job Shop Scheduling Problems
4.1 Introduction
4.2 Scheduling Problem Types
4.3 Job shop scheduling problem structure
4.4 Job shop scheduling problem formulation
4.4.1 Mathematical representation of JSSP
4.4.2 Disjunctive graph
4.4.3 Gantt-Chart
4.5 Complexity of JSSP
4.6 Job shop scheduling solving techniques
4.6.1 Exact techniques
4.6.1.1 Mathematical techniques
4.6.1.2 Enumerative techniques
4.6.1.3 Decomposition strategies
4.6.2 Approximate techniques
4.6.2.1 Constructive Methods
4.6.2.2 Insertion Algorithms
4.6.2.3 Evolutionary Methods
4.6.2.4 Local Search Techniques
CHAPTER 5: Hybrid Genetic Algorithm for Job Shop Scheduling Problems
5.1 Introduction
5.2 The proposed algorithm (HGA)
5.2.1 Phase I: GA
5.2.2 Phase II: Local search
5.3 Experimental Results
5.3.1 Test Problems
5.3.2 Results and discnssion
5.4 Conclusion
CHAPTER 6: Conclusions and Future Work
6.1 Conclusions
6.2 Future Work
Bibliography
编辑手记

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.